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�-Trifluoromethylstyrenes with a formimidoyl, an N-hy-
droxyformimidoyl, or a tosylamidomethyl group at the ortho po-
sition undergo intramolecular addition or SN2

0-type substitution
at the trifluoromethylvinyl moiety, leading to a variety of isoqui-
noline derivatives bearing 4-trifluoromethyl, 4-difluoromethyl,
and 4-difluoromethylene groups.

Isoquinoline and its derivatives are widespread in the alka-
loid family and constitute an important class of compounds in
pharmaceuticals, agrochemicals, and materials.1 In the field of
these sciences, especially in medicinal and agricultural chemis-
try, introduction of fluoroalkyl groups into heterocycles has
come into wide use as one of the most efficient methods for mod-
ification of their biological activities and physical properties.2

Among fluorocarbon substituents, fluorinated one-carbon units
are attractive:3 (i) The incorporation of a trifluoromethyl (CF3)
group into organic molecules increases lipophilicity and affects
electron density.4 (ii) A difluoromethyl (CF2H) group has hydro-
gen-bond-donor ability without nucleophilicity and with high
lipophilicity,5 which makes it a special mimic of a hydroxy
group.6 (iii) A difluoromethylene (CF2=) group acts as a reac-
tive site toward nucleophiles7 and a potential isostere of carbonyl
groups.8 Despite such immense potential, there are few methods
especially for the introduction of CF2H and CF2= groups. Thus,
a general access to fluorocarbon-substituted isoquinolines poses
a significant challenge.

This fact prompted us to devise a synthetic strategy for het-
erocycles bearing fluorinated one-carbon units, as depicted in
Scheme 1. Recently, we have reported a synthesis of 4-difluoro-
methylated quinolines 6 (Y = C, Z = N) from o-substituted �-
trifluoromethylstyrenes 1 via intramolecular SN2

0-type substitu-
tion of carbon nucleophiles (Scheme 1b).9 In order to construct a
series of fluorocarbon-bearing isoquinoline rings 3–6 (Y ¼ N,
Z ¼ C), we investigated addition (Scheme 1a) as well as substi-

tution of nitrogen nucleophiles. Cyclized intermediates 2 were
expected to undergo either of these two reactions, depending
on the reaction conditions with or without a proton source.
Carbanions 2 stabilized by the CF3 group could be trapped by
the proton source before elimination of a fluoride ion, leading
to trifluoromethylated products 3, which would provide 4 and
6 via dehydrogenation and dehydrofluorination. Herein, we
report the synthesis of isoquinoline derivatives bearing CF3,
CF2H, and CF2= groups from styrenes 1 bearing imine, oxime,
and amidomethyl moieties at the ortho position.

As a common precursor for imine 1a (X ¼ H), and oxime 1b
(X ¼ OH), o-formyl-substituted �-trifluoromethylstyrene 7 was
prepared by the coupling reaction of 2-bromo-3,3,3-trifluoropro-
pene with o-iodobenzaldehyde via 1-(trifluoromethyl)vinylbor-
onic acid according to a modified literature procedure.9,10 o-
Tosylamidomethyl-substituted styrene 1c was prepared via (i)
a similar coupling reaction of 1-(trifluoromethyl)vinylboronic
acid with o-iodobenzyl alcohol and (ii) the Mitsunobu reaction
of the resulting alcohol with BocNHTs,11 followed by (iii)
deprotection of the Boc group.

Imine 1a, prepared in situ from aldehyde 7 and ammonium
acetate (NH4OAc) in DMF–H2O (10:1), readily underwent in-
tramolecular addition without elimination to give 4-trifluoro-
methyl-3,4-dihydroisoquinoline (3a) in 84% yield from 7.12

Similarly, treatment of 7 with 1.2 molar amounts of hydroxyl-
amine hydrochloride (NH2OH.HCl) promoted an oxime-forma-
tion–intramolecular-addition sequence to afford 4-trifluorometh-
yl-3,4-dihydroisoquinoline N-oxide (3b) in 86% yield from 7
through 1b (Scheme 2).12,13 Thus obtained 3b is a cyclic nitrone,
which is a highly valuable synthetic intermediate.14

Aromatization of dihydroisoquinolines 3a and 3b leading to
isoquinoline synthesis was examined. Dehydrogenation of 3a
was effected by palladium on charcoal to give 4-trifluorometh-
ylisoquinoline (4a) in 80% yield.15 Furthermore, on treatment
of 3a with a small excess amount of DBU, the desirable HF-
elimination–isomerization occurred to give 4-difluoromethyliso-
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Scheme 1. A synthetic strategy for heterocycles bearing fluori-
nated one-carbon units.

OHC

CF3

7

 3b  86%

3a  84%

CF3

N
O

CF3

N
CF3

XN

i

or ii

−
+

X = H

X = OH

1a,b

Scheme 2. Reagents and conditions: i, NH4OAc (5ma), rt, 5 h,
DMF–H2O (10:1). ii, NH2OH.HCl (1.2ma), 70 �C, 3 h, DMF–
H2O (10:1). ma: molar amount.
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quinoline (6a) in 66% yield. Addition of an equimolar amount
of LiBr in this reaction raised the yield of 6a up to 80%
(Scheme 3).16

Nitrone 3b readily underwent a similar dehydrofluorination
on treatment with 1.4 molar amounts of DBU and 2 molar
amounts of LiBr, leading to 4-difluoromethylisoquinoline N-ox-
ide (6b) in 83% yield.16 The reactivity of 3b was also examined
in 1,3-dipolar cycloaddition with phenylisocyanate (PhNCO).17

Treatment of 3b with 1.2 molar amounts of PhNCO in DMF
promoted the expected cycloaddition followed by elimination
of carbon dioxide to give 1-anilino-4-trifluoromethyl-3,4-dihy-
droisoquinoline (3c) in 80% yield (Scheme 4).

In addition, the SN2
0-type cyclization was carried out under

anhydrous conditions to provide isoquinoline derivatives bear-
ing a difluoromethylene group. Treatment of sulfonamide 1c
with 1.5 molar amounts of KH in DMF successfully promoted
intramolecular substitution to afford 4-difluoromethylene-
1,2,3,4-tetrahydroisoquinoline (5a) in 78% yield (Scheme 5).18

Thus, we have accomplished the construction of isoquino-
line frameworks via intramolecular addition or substitution of
o-functionalized �-trifluoromethylstyrenes. This methodology
provides a variety of isoquinoline derivatives bearing fluorinated
one-carbon units (CF3, CF2H, and CF2=), starting from 2-bro-
mo-3,3,3-trifluoropropene and o-iodobenzaldehyde or o-iodo-
benzyl alcohol.

We are grateful to TOSOH F-TECH, INC. for a generous
gift of 2-bromo-3,3,3-trifluoropropene.
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Scheme 3. Reagents and conditions: i, Pd/C, reflux, 4 days,
xylene. ii, DBU (1.2ma), LiBr (1ma), 100 �C, 3 h, DMSO.
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Scheme 4. Reagents and conditions: i, DBU (1.4ma), LiBr
(2ma), 80 �C, 40min, DMSO. ii, PhNCO (1.2ma), rt, 15min,
DMF.
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